

Review
(1) Simplify:
$$(3^{2} - (-2)^{3})(\sqrt{121} - 5 \cdot 2)$$

 $= (9 - (-8))(11 - 10) = (9 + 8)(1) = 17 \cdot 1 = [7]$
(2) Simplify: $\frac{5^{3} - [-100]}{(-3)^{2} + (-2)^{4}} = \frac{125 - [-100]}{9 + 16} = \frac{125 - 100}{25}$
 $= \frac{25}{25} = [1]$

3) Evaluate
$$(\chi - \Psi)^{z}$$
 for $\chi = 1$, $\Psi = -\Psi$, and
 $(\chi - \Psi)^{z}_{3} = z = 3$
 $(1 - (-\Psi))^{z} = (1 + \Psi)^{2} = 5^{3} = 125$
4) Evaluate $-b - \sqrt{b^{2} - 4ac}$ for $a = 3$,
 $b = -5$, and $c = -2$.
 $-b - \sqrt{b^{2} - 4ac} = -(-5) - \sqrt{(-5)^{2} - 4(3)(-2)}$
 $= 5 - \sqrt{25 - (-24)}$
 $= 5 - \sqrt{25 + 24} = 5 - \sqrt{49}$ p²
 $= 5 - \sqrt{25 + 24} = 5 - \sqrt{49}$ p²

Name the Property
(1)
$$4(x + 3) = 4x + 4 \cdot 3$$
 Distribution
(2) $-3(2x + 1) = -3(2x) + (-3) \cdot 1$ Dist.
 $=(-3 \cdot 2)x - 3 \cdot 1$ Assocratin
 $= -6x - 3$ Identity
(3) $5(x + 1) - 5 = 5x + 5 \cdot 1 - 5$ Dist.
 $= 5x + 5 - 5$ Identity
 $= 5x + 0$ Inverse
 $= 5x + 10 - 5 = 5x + 10$

October 23, 2018

Working with Fractions:
Reduce
$$\frac{120}{450} = \frac{12 \cdot 10}{45 \cdot 10} = \frac{3 \cdot 4}{3 \cdot 15} = \frac{4}{15}$$

Reduce $\frac{75}{80} = \frac{5 \cdot 15}{5 \cdot 16} = \frac{3 \cdot 5}{2 \cdot 2 \cdot 2 \cdot 2} = \frac{15}{16}$
Reduce $\frac{14 x^5}{35 x^2} = \frac{2 \cdot 7 \cdot \overline{x} \cdot \overline{x} \cdot \overline{x} \cdot \overline{x}}{5 \cdot 7 \cdot \overline{x} \cdot \overline{x}} = \frac{2 \cdot x^3}{5}$
 $= \frac{2}{5} x^3$

Multiply
$$\frac{-10}{49} \cdot \frac{35}{24}$$

 $= -\frac{2 \cdot 5}{7 \cdot 7} \cdot \frac{5 \cdot 7}{2 \cdot 12} = -\frac{25}{84}$
Multiply:
 $4 \frac{1}{2} \cdot \frac{16}{9} = \frac{9}{27} \cdot \frac{16}{91} = \frac{8}{1}$
 $= \frac{8}{12}$

Divide
$$\frac{5}{12} \div \frac{-5}{21}$$

 $= \frac{1}{5} \cdot \frac{-21}{5}$
 $= \frac{1}{5} \cdot \frac{-21}{5} = \frac{-1}{4} = -\frac{1}{4}$
 $= \frac{1}{4} \cdot \frac{-1}{5}$
 $= \frac{1}{5} \cdot \frac{-21}{5} = \frac{-1}{4} = -\frac{1}{4}$
 $= \frac{1}{4} \cdot \frac{-1}{5}$
 $= \frac{1}{2} \div (-\frac{3}{4})$
 $= \frac{15}{2} \div (-\frac{15}{4}) = \frac{15}{4} \cdot \frac{-1}{5} = \frac{-2}{1} = -2$

Addition / Subtraction with Unlike Fractions
denominators
are different

$$\frac{2}{3} - \frac{1}{2} = \frac{2 \cdot 2}{3 \cdot 2} - \frac{1 \cdot 3}{2 \cdot 3}$$

$$LCD = 3 \cdot 2 = 6 = \frac{4}{6} - \frac{3}{6} = \frac{4 - 3}{6} = \frac{1}{6}$$

$$\frac{3}{4} + \frac{5}{6} = \frac{3 \cdot 3}{4 \cdot 3} + \frac{5 \cdot 2}{6 \cdot 2}$$

$$LCD = 12 \quad q = \frac{9}{12} + \frac{10}{12} = \frac{19}{12} = \frac{1}{12}$$

$$\frac{4}{12} = 2 \cdot 2$$

$$\frac{6}{12} - \frac{3}{24} = \frac{9}{12} + \frac{10}{12} = \frac{19}{12} = \frac{1}{12}$$

$$\frac{32 = 2 \cdot 2 \cdot 2 \cdot 3}{32 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3}$$

$$\frac{32 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3}{32 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3}$$

$$= \frac{15 \cdot 3}{32 \cdot 3} - \frac{5 \cdot 4}{24 \cdot 4} = \frac{45}{96} - \frac{20}{96} = \frac{25}{96}$$

Simplify:

$$\begin{pmatrix} \frac{3}{10} - \frac{2 \cdot 2}{5 \cdot 2} \div \left(1 \cdot \frac{1}{5}\right) \\
LcD=10 \\
= \left(\frac{3}{10} - \frac{4}{10}\right) \div \left(\frac{6}{5}\right) \\
= \frac{-1}{10} \div \frac{5^{2}}{6} = \frac{-1}{12} \\
\frac{10}{2} \div \frac{5}{6} = \frac{-1}{12}$$

Simplify:
$$\frac{3}{2} \cdot \sqrt{\frac{4}{9}} = \frac{3}{2} \cdot \frac{2}{3} = 1$$

Inverse
Simplify: $\frac{1}{2}(2x+6) - (x+3)$
 $= \frac{1}{2} \cdot (2x) + \frac{1}{2} \cdot 6 - x - 3$ Dist.
 $= (\frac{1}{2} \cdot 2)x + \frac{1}{2} \cdot 6 - x - 3$ Associative
 $= 1x - x + 3 - 3$ Inverse
 $= x - x + 3 - 3$ Inverse
 $= 0 + 0 = 0$ Inverse

n,

Evaluate
$$\chi + \chi - \chi \chi$$
 for $\chi = \frac{2}{3}, \chi = \frac{3}{5}$
 $\frac{2}{3} + \frac{-3}{5} + \frac{2}{3}, \frac{2}{5}$
 $= \frac{2}{3} - \frac{3}{5} + \frac{2}{5} = \frac{2 \cdot 5}{3 \cdot 5} - \frac{3 \cdot 3}{5 \cdot 3} + \frac{2 \cdot 3}{5 \cdot 3}$
L(D)=15
 $= \frac{10 - 9 + 6}{15} = \frac{7}{15}$

Working with Complex Stractions
Straction that Contains
other Stractions

$$\frac{3-\frac{1}{4}}{1+\frac{1}{2}} = \frac{4\cdot 3-4\cdot \frac{1}{4}}{4\cdot 1+\frac{1}{2}} = \frac{12-1}{4+2} = \frac{11}{6}$$

$$L(D=4)$$

Simplify
$$3\frac{1}{5} - 1\frac{1}{2} = \frac{16}{5} - \frac{3}{2}$$

 $-\frac{17}{10} = -\frac{17}{10}$
 $LCD = 10$
 $LCD = 10$
 $\frac{10 \cdot \frac{16}{5} - \frac{10 \cdot 3}{2}}{10 \cdot \frac{3}{2}} = \frac{32 - 15}{-17} = \frac{17}{-17} = \frac{-17}{-17}$

Evaluate
$$\frac{\chi - 4}{\chi y}$$
 for $\chi = \frac{-3}{4}$ and $y = \frac{1}{5}$

$$= \frac{\frac{-3}{4} - \frac{1}{5}}{\frac{-3}{4} \cdot \frac{1}{5}} = \frac{\frac{-3}{4} - \frac{1}{5}}{\frac{-3}{20}} = \frac{\frac{5}{20} \cdot \frac{-3}{4} - \frac{1}{20} \cdot \frac{1}{5}}{\frac{20}{20} \cdot \frac{-3}{20}}$$

$$L(D=20) = \frac{-15 - 4}{-3}$$

$$= -\frac{19}{-3} = \frac{19}{3}$$

Hint: Distribute Simplify $3(\chi^2 + 8\chi + 1) - 2(\chi^2 + 12\chi^2 - 1) - 5$ $= 3\chi^2 + 24\chi + 3 - 2\chi^2 - 24\chi + 2 - 5$ $=3\chi^{2} - 2\chi^{2} = 1\chi^{2} = \chi^{2}$

Sind Prime factorization
(D) 75 = 3.25 = 3.5.5 =
$$3.5^2$$

(2) 210 = 21.10 = 3.7.2.5 = $2.3.5.7$
(3) 1230 = 123.10 = 3.41.2.5 = $2.3.5.41$
GCF: Greatest Common Factor
24 \$16 24 = 8.3
16 = 8.2 GCF = 8

Find the GCF

$$20\chi^2$$
, 30χ , $40\chi^3$
 $20\chi^2 = 10 \cdot 2 \cdot \chi \cdot \chi$
 $30\chi = 10 \cdot 3 \cdot \chi = \Rightarrow GCF = 10\chi$
 $40\chi^3 = 10 \cdot 2 \cdot 2 \cdot \chi \cdot \chi \cdot \chi$

Find LCM For 24
$$\not\in$$
 30.
 $24 = 2 \cdot 2 \cdot 2 \cdot 3$
 $30 = 2 \cdot 3 \cdot 5$
 $1 \text{ cm} = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 = 120$
CH.1