Math 115
Fall 2018
Lecture 2

$$
\begin{aligned}
& 3 a^{2}+b^{2}=c^{2} ? \\
& y=00 x+b d=r t
\end{aligned}
$$

Review
(1) Simplify: $\left(3^{2}-(-2)^{3}\right)(\sqrt{121}-5 \cdot 2)$

$$
=(9-(-8))(11-10)=(9+8)(1)=17 \cdot 1=17
$$

(2) Simplify:

$$
\begin{aligned}
& \frac{5^{3}-|-100|}{(-3)^{2}+(-2)^{4}}=\frac{125-|-100|}{9+16}=\frac{125-100}{25} \\
& =\frac{25}{25}=1
\end{aligned}
$$

(3) Evaluate $(x-y)^{z}$ for $x=1, y=-4$, and

$$
\begin{aligned}
& (x-y)^{z}= \\
& (1-(-4))^{3}=(1+4)^{3}=5^{3}=125
\end{aligned}
$$

(4) Evaluate $-b-\sqrt{b^{2}-4 a c}$ for $a=3$, $b=-5$, and $c=-2$.

$$
\begin{aligned}
-b-\sqrt{b^{2}-4 a c} & =-(-5)-\sqrt{(-5)^{2}-4(3)(-2)} \\
& =5-\sqrt{25-(-24)} \\
& =5-\sqrt{25+24}=5-\sqrt{49} \\
& =5-7=-2
\end{aligned}
$$

Name the Property
(1) $4(x+3)=4 x+4 \cdot 3$

Distribution
(2)

$$
\begin{aligned}
-3\left(2 x^{2}+1\right) & =-3(2 x)+(-3) \cdot 1 & & \text { Dist. } \\
& =(-3 \cdot 2) x-3 \cdot 1 & & \text { Associative } \\
& =-6 x-3 & & \text { Identity } \\
5(x+1)-5 & =5 x+5 \cdot 1-5 & & \text { Dist. } \\
& =5 x+5-5 & & \text { Identity } \\
& =5 x+0 & & \text { Inverse } \\
& =5 x & & \text { Identity }
\end{aligned}
$$

(3)
working with fractions:
Reduce $\quad \frac{120}{450}=\frac{12 \cdot 10}{45 \cdot 10}=\frac{35 \cdot 4}{3 \cdot 15}=\frac{4}{15}$

Reduce $\quad \frac{75}{80}=\frac{5 \cdot 15}{5 \cdot 16}=\frac{3 \cdot 5}{2 \cdot 2 \cdot 2 \cdot 2}=\frac{15}{16}$

Reduce

$$
\begin{aligned}
\frac{14 x^{5}}{35 x^{2}}=\frac{2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x}{5 \cdot x \cdot x \cdot x} & =\frac{2 x^{3}}{5} \\
& =\frac{2}{5} x^{3}
\end{aligned}
$$

Multiply $\frac{-10}{49} \cdot \frac{35}{24}$

$$
=-\frac{2 \cdot 5}{7 \cdot x} \cdot \frac{5 \cdot x}{2 \cdot 12}=-\frac{25}{84}
$$

Multiply:

$$
\begin{aligned}
4 \frac{1}{2} \cdot \frac{16}{9}=\frac{1}{2} \cdot \frac{8}{9_{1}} & =\frac{8}{1} \\
& =8
\end{aligned}
$$

Multiply

$$
\begin{array}{r}
-5 \frac{23}{5} \cdot\left(-4 \frac{1}{3}\right) \\
=\left(\frac{21}{117}\right. \\
\left.=+\frac{97}{5}\right) \cdot\left(-\frac{13}{3}\right) \\
\frac{10}{17} \\
=\frac{13}{3}=\frac{117}{5} \\
=23 \frac{2}{5}
\end{array}
$$

Divide $\quad \frac{5}{12} \div \frac{-5}{21}$

$$
=\frac{\frac{1}{5}}{12} \cdot \frac{-21}{4}-\frac{-7}{4}=-1 \frac{3}{4}
$$

$$
\begin{array}{r}
\frac{a}{b} \div \frac{c}{d}= \\
\frac{a}{b} \cdot \frac{d}{c} \\
4 \sqrt{\frac{1}{7}} \\
\frac{-4}{3}
\end{array}
$$

Divide $\quad 7 \frac{1}{2} \div\left(-3 \frac{3}{4}\right)$

$$
=\frac{15}{2} \div\left(-\frac{15}{4}\right)=\frac{15}{\frac{2}{1}} \cdot \frac{-4}{15}=\frac{-2}{1}=-2
$$

Addition ε_{1} Subtraction with like fractions
Same Denominator

$$
\begin{aligned}
& \frac{9}{16}+\sqrt{\frac{3}{16}}=\frac{9+3}{16}=\frac{12}{16}=\frac{3}{4}=\frac{3 x+1}{x-1}=\frac{2 x}{x-1}=\frac{2}{x-21} \\
& =\frac{5+2}{21}=\frac{7}{21}=\frac{x \cdot 1}{x \cdot 3}=\frac{3 x+1-2 x-2}{x-1} \\
& =\frac{1}{3}=\frac{x-1}{x-1}=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Addition / Subtraction with unlike fractions } \\
& \text { denominators } \\
& \text { are different } \\
& \frac{2}{3}-\frac{1}{2}=\frac{2 \cdot 2}{3 \cdot 2}-\frac{1 \cdot 3}{2 \cdot 3} \\
& L C D=3 \cdot 2=6=\frac{4}{6}-\frac{3}{6}=\frac{4-3}{6}=\frac{1}{6} \\
& \frac{3}{4}+\frac{5}{6}=\frac{3 \cdot 3}{4 \cdot 3}+\frac{5 \cdot 2}{6 \cdot 2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{15 \cdot 3}{32 \cdot 3}-\frac{5 \cdot 4}{24 \cdot 4}=\frac{45}{96}-\frac{20}{96}=\frac{25}{96}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Simplify: }(\underbrace{\frac{3}{10}-\frac{2 \cdot 2}{5 \cdot 2}}_{\text {LCD }=10}) \div\left(1 \frac{1}{5}\right) \\
& =(\underbrace{3}_{10}-\frac{4}{10}) \div\left(\frac{6}{5}\right) \\
& =\frac{-1}{10} \cdot \frac{\frac{5}{2}}{6}=\frac{-1}{12}
\end{aligned}
$$

Simplify:

$$
\frac{3}{2} \cdot \sqrt{\frac{4}{9}}=\frac{3}{2} \cdot \frac{2}{3}=1
$$

Inverse
Simplify: $\quad \frac{1}{2}(2 x+6)-(x+3)$

$$
\begin{array}{ll}
=\frac{1}{2} \cdot(2 x)+\frac{1}{2} \cdot 6-x-3 & \tag{Dist.}\\
=\left(\frac{1}{2} \cdot 2\right) x+\frac{\text { Dist }}{3-x}-3 & \\
=1 x-x+3-3 & \begin{array}{l}
\text { Associative } \\
\\
=x-x \text { Inverse, } \\
\text { commutative } \\
\\
=0+3-\beta
\end{array} \\
\text { identity } \\
&
\end{array}
$$

Find the area \& Perimeter:

$$
\begin{array}{r}
\begin{array}{c}
A=L W \\
P=2 L+2 W
\end{array} \\
8 \frac{1}{4} m \\
A=8 \frac{1}{4} \cdot 4 \frac{2}{3}=\frac{11}{35} \cdot \frac{74}{3}=\frac{77}{2}=\sqrt{38 \frac{1}{2} m^{2}} \\
P=2 \cdot 8 \frac{1}{4}+2 \cdot 4 \frac{2}{3} \\
=2 \cdot \frac{33}{42}+2 \cdot \frac{14}{3}=\frac{33}{2}+\frac{28}{3}=\frac{33 \cdot 3}{2 \cdot 3}+\frac{28 \cdot 2}{3 \cdot 2} \\
\begin{array}{r}
6 \sqrt{\frac{25}{155}}-\frac{12}{35} \\
-30
\end{array} \quad=\frac{99}{6}+\frac{56}{6}=\frac{99+56}{6} \\
=\frac{155}{6}=25 \frac{25}{6} m
\end{array}
$$

find $A \dot{\xi} P$

$$
\underbrace{3 \frac{1}{4} \mathrm{~cm}} 3 \frac{1}{4} \mathrm{~cm}
$$

$$
P=4\left(3 \frac{1}{4}\right)
$$

$$
\begin{aligned}
& A=S^{2} \\
& P=4 S \\
& A=\left(3 \frac{1}{4}\right)^{2}=\left(\frac{13}{4}\right)^{2} \\
&=\frac{169}{16} \mathrm{~cm}^{2}
\end{aligned}
$$

$$
=\frac{4}{1} \cdot \frac{13}{4}=13 \mathrm{~cm}
$$

Evaluate $x+y-x y$ for $x=\frac{2}{3}, y=\frac{-3}{5}$

$$
\begin{aligned}
& \frac{2}{3}+\frac{-3}{5}-\frac{2}{3} \cdot \frac{2}{5} \\
& =\frac{2}{3}-\frac{3}{5}+\frac{2}{5}=\frac{2 \cdot 5}{3 \cdot 5}-\frac{3 \cdot 3}{5 \cdot 3}+\frac{2 \cdot 3}{5 \cdot 3} \\
& L(D)=15 \\
& =\frac{10-9+6}{15}=\frac{7}{15}
\end{aligned}
$$

working with Complex fractions
fraction that contains other fractions

$$
\begin{aligned}
& \frac{3-\frac{1}{4}}{1+\frac{1}{2}}=\frac{4 \cdot 3-4 \cdot \frac{1}{4}}{4 \cdot 1+4 \cdot \frac{1}{2}}=\frac{12-1}{4+2}=\frac{11}{6} \\
& \operatorname{LCD}=4
\end{aligned}
$$

$$
\begin{aligned}
& \text { Simplify } \frac{3 \frac{1}{5}-1 \frac{1}{2}}{-\frac{17}{10}}=\frac{\frac{16}{5}-\frac{3}{2}}{-\frac{17}{10}} \\
& =\frac{L C D=10}{10 \cdot \frac{16}{5}-10 \cdot \frac{5}{2}} \frac{10 \cdot \frac{-17}{10}}{=}=\frac{32-15}{-17}=\frac{17}{-17}=-1
\end{aligned}
$$

Evaluate $\frac{x-y}{x y}$

$$
\begin{aligned}
=\frac{\frac{-3}{4}-\frac{1}{5}}{\frac{-3}{4} \cdot \frac{1}{5}}=\frac{\frac{-3}{4}-\frac{1}{5}}{\frac{-3}{20}} & =\frac{50 \cdot \frac{3}{4}-20 \cdot \frac{1}{5}}{20 \cdot \frac{-3}{20}} \\
\text { LCD }=20 & =\frac{-15-4}{-3} \\
& =\frac{-19}{-3}=\frac{19}{3}
\end{aligned}
$$

Simplify
Hint: Distribute

$$
\begin{aligned}
& 3\left(x^{2}+8 x+1\right)-2\left(x^{2}+12 x^{-1}-1\right)-5 \\
= & 3 x^{2}+24 x+3-2 x^{2}-24 x+2-5 \\
= & 3 x^{2}-2 x^{2}=1 x^{2}=x^{2}
\end{aligned}
$$

Prime Factorization

find Prime factorization
(1) $75=3 \cdot 25=3 \cdot 5 \cdot 5=3 \cdot 5^{2}$
(2) $210=21 \cdot 10=3 \cdot 7 \cdot 2 \cdot 5=2 \cdot 3 \cdot 5 \cdot 7$
(3) $1230=123 \cdot 10=3 \cdot 41 \cdot 2 \cdot 5=2 \cdot 3 \cdot 5 \cdot 41$

GCF: Greatest Common Factor

$$
\begin{array}{ll}
24 \xi_{1} 16 & 24=8 \cdot 3 \\
16=8 \cdot 2
\end{array} \quad G C F=8
$$

find the GCF

$$
\begin{aligned}
& 20 x^{2}, 30 x, 40 x^{3} \\
& 20 x^{2}=10 \cdot 2 \cdot x \cdot x \\
& 30 x=10 \cdot 3 \cdot x \quad \Rightarrow G C F=10 x \\
& 40 x^{3}=10 \cdot 2 \cdot 2 \cdot x \cdot x \cdot x
\end{aligned}
$$

LCM: Least Common Multiple

$$
\begin{aligned}
& 15 \Rightarrow 15,30,45,60,75, \ldots \\
& 20 \Rightarrow 20,40,60,80,100, \ldots . \\
& 15=3 \cdot 5 \\
& 20=\frac{5 \cdot 2 \cdot 2}{L C M}=3 \cdot 5 \cdot 2 \cdot 2=
\end{aligned}
$$

Find LCM for $24 \varepsilon, 30$.

$$
\begin{aligned}
& 24=2 \cdot 2 \cdot 2 \cdot 3 \\
& 30=2 \cdot 3 \cdot 5 \\
& L C M=2 \cdot 2 \cdot 2 \cdot 3 \cdot 5=120
\end{aligned}
$$

